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Summary. The most common method for genetic evalua- 
tion when parents are unknown is best linear unbiased 
prediction with genetic groups (BLUP-G). With this 
method unknown parents are assumed to be unrelated to 
any other animals in the population. This assumption is 
unrealistic in most situations. If a finite number of poten- 
tial parents can be identified and the probabilities of 
being the true parent can be assigned to these, genetic 
evaluation can be obtained given the uncertainty of 
parentage without introducing genetic groups into the 
model. The correct numerator relationship matrix with 
uncertain parentage (A) is derived. Rules are given to 
efficiently compute A and A-  1. Computer simulation was 
used to compare BLUP-G with BLUP using A. The 
simulated population consisted of ten sires and 200 dams 
per breeding season. The dams were always known; the 
sires were unknown for 10% or 30% of the males and 
30% of the females. The number of potential sires was 
three (BLUP-A 0 or ten (BLUP-A2), including the true 
sire in both cases. Equal probabilities were assigned to 
each potential sire. The increase in response with BLUP- 
A1 and BLUP-A2 relative to BLUP-G ranged from 4% 
to 8% in the fifth breeding season. Selection with BLUP- 
A1 or BLUP-A 2 resulted in higher inbreeding, 17% and 
12%, respectively, than with BLUP-G. Estimates of re- 
sponse to selection were unbiased with BLUP-A1 and 
BLUP-A2, but not unbiased with BLUP-G. Mean square 
error of estimated genetic means and mean prediction 
error variance were higher with BLUP-G than with 
BLUP-A 1 or BLUP-A a. 
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Introduction 

Animals with unknown parents are common in most 
breeding programs. Unknown parentage can affect ge- 
netic progress in two ways. First, it can reduce selection 
intensity if animals with unknown parents are not con- 
sidered for selection. Second, with uncertain parentage, 
the accuracy of evaluation will be lower. Additionally, 
mis-identification of parents can bias downwards esti- 
mates of heritability (Van Vleck 1970). 

The most common method for genetic evaluation 
when the parents of animals are unknown is based on 
assigning 'phantom parents' to these animals (Westell 
et al. 1988). These phantom parents are classified into 
genetic groups, usually according to path of selection and 
date of birth (Wiggans et al. 1988). Evaluations are then 
obtained by best linear unbiased prediction (BLUP), as- 
suming a mixed linear model for phenotypes and with 
genetic groups as fixed effects in addition to the usual 
fixed and random effects. An implicit assumption in this 
model is that the phantom parents are unrelated and 
noninbred (Quaas 1988). In most situations, however, it 
would be unrealistic to assume that unknown parents are 
unrelated to any other individuals in the population. 
Thus, in most situations, evaluations obtained as above, 
hereafter referred to as BLUP-G, would not have the 
properties of BLUP. 

Genetic evaluations, however, can be obtained with- 
out making the assumption that unknown parents are 
unrelated to any individuals in the population (Poivey 
and Elsen 1984; Foulley et al. 1987; Henderson 1988; 
Dempfle 1990). In these methods, probabilities of parent- 
age are assigned to a finite number of potential candi- 
dates. Evaluations are then obtained given this uncertain- 
ty of parentage, without introducing genetic groups into 
the model. 
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The relationship between these two methods of genet- 
ic evaluation when the parents of some individuals are 
unknown, however, has not been examined previously. 
The objectives of the work presented here are: (1) to 
generalize and formalize some previous results on evalu- 
ation with uncertain parentage (Poivey and Elsen 1984; 
Henderson 1988; Dempfle 1990), and (2) to compare re- 
sponse to selection using B L U P - G  with those obtained 
using BLUP with uncertain parentage (Henderson 1988). 

Theory 

Model 

Consider the animal model 

y = X f l + Z u + e  

where y is a vector of observations, fl is a vector of fixed 
effects, X and Z are known incidence matrices, and u and 
e are random vectors of additive breeding values and 
residuals, respectively. 

With uncertain parentage, if the sire of animal i is 
unknown, a number  s~ of potential sires can be assigned 
with probabilities p~l . . . . .  Pi~; and similarly, if the dam is 
unknown, di potential dams can be assigned with proba-  
bilities q~l, . . . ,  q~di. Each combinat ion of potential par-  
ents for animals with unknown parents can be represent- 
ed by a different pedigree, Pk, k = 1 . . . . .  v; where P is a 
random variable with probabili ty function =(P). This 
function will be usually given by information external to 
the production records, such as management  (e.g., multi- 
ple-sire joining) or molecular information (blood types, 
D N A  markers). The joint distribution of y and u is 

f(y,u) = ~2 f(y, u l P = P k )  n(Pk) (1) 
k = l  

with (2) 

f(Y, u lP=Pk)  = N I ( O  fl ) ,  ( ZAk Z' O'a2 + R 0"2AkO.a2 Aka2ajjAka2~ 

where A k is the numera tor  relationship matrix (NRM) 
obtained with P = Pk, aa 2 is the additive variance, R is the 
residual covariance matrix, and a~ is the residual vari- 
ance. 

Best prediction 

Selection based on the conditional mean or best predictor 
maximizes expected genetic progress when the propor-  
tion selected is fixed (Fernando and Gianola  1986). Note  
that given P, y and u are normally distributed (2), but not 
marginally distributed (1). Thus, the conditional mean of 
u given below 

E(u[y) oc ~ g(u ly ,  P = P k )  f ( y I P = P k )  ~(Pk) 
k = l  

is not a linear function of the data (Poivey and Elsen 
1984). E (uly, P = Pk) is the best linear predictor of u given 
P = Pk, and f (y lP  = Pk) is the likelihood of the data given 
P=Pk .  If the location parameters,  fl, are not known, 
E (uJy) cannot be calculated. In this situation, prediction 
can be based on 

g(ulw)oc ~2 g(ulw,  P = P k ) f ( w l P = P k )  ~(Pk) 

where E (ulw, P = Pk) is B L U P  of u given P = Pk with 
w = y- -  X fl, X fl is any unbiased estimate of X fl (Fernando 
and Gianola  1986). 

In the above formulas, summation is over all possible 
values of P. Consider 20 animals with four possible par- 
ents each. Then P may take 420 = 1.1 x 10 ~2 different val- 
ues. Thus, the calculation of the conditional mean will 
not be computat ionally feasible in most situations. 
Therefore, we now consider linear prediction. 

Best linear unbiased prediction 

The best linear unbiased predictor of u, fi, can be obtained 
by solving Henderson's  (1973) mixed model equations 
(MME) given below (3) 

[x, -lX lE ]=rx, - yy 1 
Z , R - 1 X  Z ' R - 1 Z + V a r ( u ) - ~  a 2 ~ Z ' R  -~ 

With uncertain parentage, the variance of (y, u) can be 
written as: 

Var (y, u) = E v [Var (y, u I P = Pk)] + Varp [E (y, u ] P = Pk)] 

where the subscript P means that expectation (E) and 
variance War) are taken with respect to all possible values 
P. Note  that 

E(y, ul P=Pk) = (X fl, O) 

is constant for all values of P. Thus, 

Var (y, u) = Ep [Var (y, u [ P = Pk)] 

= F._ V a r ( y , u [ P = P k ) ~ ( P k ) =  A~) k = l  

with 

2 2 A k ~ ( P k )  2 (4) Vat (u) = $ a a = aa 
k = l  

and 

Var(y) = V =  Z N Z ' a ~ +  RG 2 

However, computing Var(u) from (4) may not be coin- 
putationally feasible because the summation is over all 
possible pedigrees. In the following section we give an 
alternative derivation for Var (u) that leads to computa-  
tionally feasible algorithms for obtaining A and * - 1 .  



Construction of  A and of  A -  

Suppose that the i-th individual has males mr , . . . ,  
mj . . . . .  m~, as potential sires and females f~, ..., fk, "", fa, 
as potential dams. The covariance between the breeding 
values of the 1-th and the i-th individual is 

2 
COV (Ul, U i) = E (u I u i) = all (7 a 

because E (u) = 0 and where A = {aij }. This can be written 

as: 

E (U l U i ) = E j, k [E  (U 1 U i I m j, fk)] (5) 

where the condition is on mj and fk being the true parents 
of i. If 1 is not  a direct descendent of i (Chang et al. 1991): 

E (u Iui[ mj, fk) = 0.5 [E (ut Umj ) + E (U 1 Uf~)] 

2 (6) = 0.5 [aim j + alfk] o- a 

Substituting (6) in (5) and taking the expectation over j 
and k, we obtain (7) 

2 = 0.5 + ~" qik alfk O'a" C o y  (Hi, U i) = all o a alm J 
j k = l  

Similarly, the variance of the breeding value of individual 
i is 

2 = gj, k[g(u~lmj fk)] Var (ui) = a .  ffa ' (8) 

�9 2 ( l + F i )  2 ---- 1 + 0.5 " ~  ~2 Pij qik amj fk O'a = aa 
j = l  k = l  

where F i is the inbreeding coefficient of i-th individual. 
Rules (7) and (8) are a generalization of those given by 

Henderson (1988), allowing uncertainty of parentage in 
both sexes, and those from Dempfle (1990) by accommo- 
dating pedigrees that span more than two generations. 

As an example, consider the pedigree given in Fig. 1, 
where dotted lines indicate uncertain parentage. Assign- 
ing equal probabilities for 1 or 2 being the sire of 4, and 
3 or 4 being the dam of 5, the N R M  in Fig. 2 was ob- 
tained using (7) and (8). It is easily verified that this N R M  
is equal to the average of the four NRMs shown in Fig. 3 
corresponding to the four possible pedigrees. 

Now we derive the rules to obtain the inverse of A_. 
Consider the following linear model for ui: 

Si di 

U i = 0.5 ~'~ Pij Umj -]- 0.5 "~ qik Ufk']" ~:i (9) 
j = l  k - 1  

where si is a genetic residual term. The variance of (9) is: 

2 __ {0.25j  s~l si l  pij Pij '  aii O'a --  ~ amj my 
y =  

di di 

+ 0.25 ~ ~ qik qik' afk fk' 
k - 1  k ' - I  

Si di 

.].].0.5 ~ ~ Pij qik am'fk a ~ + V a r ( g i )  
j =1 k = l  J J 
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Fig. 1. Pedigree used as example. Continuous line known parent, 
dashed line uncertain parent 

1 2 3 .4 5 

.410.25 0 0 0.25 0.5625 2 0 1 0 0,25 0.0625 
3 0 0 1 0,5 0.3 75 

0.25 0.5 1 0.5 
5 0.5625 0.0625 0.375 0.5 1.0625 

Fig. 2. Numerator relationship matrix for the pedigree of Fig. t 
computed using the rules given in Eqs. (7) and (8) 

1 2 3 .4 5 

I[1! 0 0 0.5 0.5 
2 I 0 0 0 
3 0 I 0.5 0.5 
4 0.5 0 0.5 1 0.5 
5 0.5 0 0.5 0.5 1 
a 

1 
1 [1 0 0 0 0.5 
210 1 0 0.5 0 
3 0 0 1 0.5 0.5 
4. 0 0,5 0.5 1 0.25 
5 0,5 0 0.5 0.25 1 

1 2 3 .4 5 

1 I !  0 0 0,5 .75 
2 1 0 0 
3l 0 1 0.5 0.25 I 
.4 0.5 0 0.5 1 0.75 
5 0.75 0 0,25 025 1.25 
b 2 3 .4 5 1 2 3 4 5 

11 0 0 0 0.5 
0 1 0 0.5 0.25 
0 0 1 0.5 0.25 
0 0.5 0.5 1 0.5 
0.5 0.25 0.25 0.5 1 

c d 

Fig. 3a-d.  The four numerator relationship matrices corre- 
sponding to the four pedigrees in Fig. 1. a I is sire of 4, 3 is dam 
of 5; b 1 is sire of 4, 4 is dam of 5; e 2 is sire of 4, 3 is dam of 
5; d 2 is sire of 4, 4 is dam of 5 

since the covariances involving u and e are zero (see 
Appendix). From (8) 

f si si 
Var(ei)= I - 0 . 2 5 Y ~  ' ~ P i j P i j ,  amjmj, 

j = l j ' = l  
di ~, ~ (10) 

2 (~i 2 
- 0.25 Y', E qik qlk' afkfk, aa aa" 

k = l  k ' = l  

Note than when s i = d i =  1 (10) reduces to the usual for- 
mula when both parents are known: 

2 Var (8i) = {1 - -0 .25  amm --  0.25 aff} o a 

If, on the other hand, each Pij and/or qik are very small, 
usually s i and/or d i are  very large, (10) also reduces to the 
usual expression when one or both parents are unknown 
(Henderson 1976). It is customary to interpret Var (el) as 
an error term produced by Mendelian segregation 
(Sorensen and Kennedy 1984). In the case of uncertain 
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parentage, however, it is shown in (10) that there is an 
additional source of residual genetic variance due to vari- 
ability within potential sires and within potential dams 
(Dempfle 1990). 

Equation (9) can be expressed in matrix form as 

u = T u + a  

where T is a lower triangular transition matrix contain- 
ing in the row of the i-th individual s~ terms equal to 
0 . 5 p i  j ( j = l  . . . .  ,Si) and d i t e rms  equal to 0 . 5 q i  k 
(k = 1, ..., d~), and ~ is a vector with elements zl. Then, 
following Quaas '  (1988) approach,  

u = ( I - T ) - l ~  

and 

2 Var (u) = A c~ = (I - T) -  ~ D (I - T ' ) -  1 cr 

where D is a diagonal matrix (see Appendix) containing 
the elements c5~ given by (10). Consequently 

~_-1 = ( I - T ' ) D - ~  ( I - T ) .  

The rules to invert ~ follow: 

1) Set ~.-1 to zero 
2) Compute  D from (10) 
3) For  each individual i in the pedigree, make the follow- 

ing contributions to A -  

position 
(i,i) 
(i, m j), (m j, i) 
(i, fk), (fk, i) 
(mj,mj,)  
(fk, fk') 

contribution 

-0 .5p i j  6i -1 j = l  . . . . .  s i 
- -0 .5  qik ~i -1  k = l  . . . . .  d i 
0.25pijPiy3i -1 j = l , . . . , s i ;  j ' = l  . . . .  ,s  i 
0.25 qikqik,~i  -1  k = l ,  . . . ,  di;  k ' = l  . . . . .  d i 

(mj , fk) , ( fk ,mj)  0 . 2 5 p i j q i k b i  -1  j = l  . . . . .  si; k = l  . . . . .  d i. 

This algorithm is a generalization of those given by Hen- 
derson (1988) and Dempfle (1990). A F O R T R A N  pro- 
gram to compute A, ~ - 1  and B L U P  is available on 
request from the first author. 

Simulation 

A computer  simulation was used to compare  genetic eval- 
uation by B L U P  using genetic (BLUP-G) and that  by 
BLUP using A (BLUP-A). The simulated population 
consisted of ten sires and 200 dams per breeding season. 
Each breeding season each sire was mated to 20 dams, 
producing 10 male and 10 female offspring. Each dam 
produced one offspring per breeding season. Only fe- 
males had records, which were assigned at birth, one 
record per female. The sire was unknown for 10% or 30% 
of the male offspring and 30% of the female offspring. The 
dam was always known. The 10 best males, according to 
the corresponding evaluation method, from among the 

100 male offspring and from among the ten sires were 
selected. Similarly, the 200 best females from among the 
100 female offspring and from among the 200 dams were 
selected. The unselected animals were culled. Five breed- 
ing seasons were simulated. Heritability was 0.25 and the 
phenotypic variance was 100. The number  of replicates 
was 500 for each method of evaluation. Three methods of 
evaluation, described below, were compared. 

1) BLUP-G:  one genetic group was defined per breeding 
season; 
2) BLUP-,~I :  for each animal with unknown sire, the 
true sire and two random sires were assigned the same 
probabili ty (1/3) of being the true sire; 
3) BLUP-A2: for each animal with unknown sire, all the 
ten sires of the corresponding breeding season were as- 
signed the same probabili ty (1/10) of being the true sire. 

The following parameters  were studied: response to 
selection, bias of estimated genetic mean in the last breed- 
ing season (BEGM), mean squared error of estimated 
genetic mean, averaged over breeding seasons 
(MSEGM), and mean prediction error variance (MPEV). 
B E G M  was estimated as 
n 

5~ (~ , i -  a,i)/n 
i 

where n is the number  of replicates; fiti, the mean of the 
predicted breeding values (fiti) in the last breeding season 
(t); and fiti, the mean of the true breeding values (uti). 
M S E G M  was estimated as 

t n 
2 ~ ( f i l l -  Uii )2 / (  n - - l ) / t  
1 i 

M P E V  was estimated as 

n N 
"~ ~ ( H i j -  Uij)2/( N - - 1 ) / n  
i j 

where N is the total number  of animals per replicate. 
Predicted breeding values to obtain BEGM, MSEGM,  
and M P E V  were computed with all information at the 
end of each replicate. 

Simulation results are in Table 1. This table also gives 
the results when all of the parents were identified (BLUP- 
A), where reponse to selection is expected to be maximum 
in this situation. Response to selection using BLUP-A 1 
and BLUP-A 2 was significantly higher than with BLUP-  
G. When sires of 10% of the male offspring and 30% of 
the female offspring were unknown, and with three poten- 
tial sires (BLUP-A1), the loss in response with respect to 
BLUP-A was less than 2%. The increase in response with 
BLUP-A relative to B L U P - G  ranged from 4% to 8%, 
the advantage increasing as both the number  of candi- 
dates and the percentage of animals with unknown sires 
decreased. Selection with BLUP-A 1 or BLUP-,~ z result- 
ed in higher levels of inbreeding than selection with 
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Table 1. Simulation results using A with three potential sires (BLUP-A1), A with ten potential sires (BLUP-A2), and genetic groups 
(BLUP-G). The method with no unknown parents (BLUP-A) is shown for comparison. The percentage of females with unknown sire 
was 30%. Inbreeding and all relationships were taken into account to obtain the inverse of the additive relationship matrix. Five 
breeding seasons and 500 replicates per method were run 

Method % of males with Response_+0.08 F ~ x 100 BEGM b MSEGM c MPEV d 
unknown sire 

BLUP-A 0.00 7.88 7.71 -0.02 0.38 16.99 
BLUP-A 1 0.10 7.75 7.00 -0.02 0.41 t7.52 
BLUP-A 1 0.30 7.48 6.70 0.02 0.40 17.58 
BLUP-A 2 0.10 7.54 6.78 - 0.01 0.41 17.55 
BLUP-A 2 0.30 7.27 6.38 0.04 0.38 17.62 
BLUP-G 0.10 7.17 6.17 0.30 0.49 24.30 
BLUP-G 0.30 6.97 5.57 0.29 0.63 23.97 

Mean inbreeding coefficient in the last breeding season computed using the real pedigree 
b Bias of the estimated genetic mean in the last breeding season 
c Mean squared error of the genetic mean 
a Mean prediction error variance 

Table 2. Central processing unit time used to compute the nu- 
merator relationship matrix (NRM) and to solve the mixed mod- 
el equations (MME) in a SUN 4/260 workstation. Thirty percent 
of male and female offspring with unknown sire except with 
BLUP-A 

Method Number Inbreeding NRM MME 
of poten- included time" time b 
tial sires 

BLUP-A 1 yes 8.96 8.99 
BLUP-A 1 3 yes 28.16 15.72 
BLUP-A 1 3 no 0.00 15.26 
BLUP-A 2 10 yes 39.42 28.83 
BLUP-A 2 10 no 0.00 28.98 
BLUP-G - yes 8.70 10.39 
BLUP-G - no 0.00 10.55 

Mean time per replicate in the last breeding season 
b Mean time per replicate per breeding season 

BLUP-G.  This is due to the fact that level of inbreeding 
increases as both accuracy of selection and amount  of 
family information increases (Robertson 1961). 

Estimation of response to selection seemed to be un- 

biased with BLUP-A 1 and BLUP-A2, but  was biased 
with BLUP-G (Table 1). Both M S E G M  and MPEV were 
smaller with BLUP-A~ and BLUP-A 2 than with BLUP- 
G (Table 1). 

Table 2 shows the computer time consumed to obtain 
the NRM, which is necessary to compute the elements of 
D, and the time to solve the M M E  by iteration on data 
(Misztal and Gianola  1987). It took 2.4 to over 4 times 
longer to calculate the N R M  with uncertain parentage 
than with no unknown parents or with genetic groups. 
With BLUP-A, the cost to solve the M M E  increased 
1.7-3.2 times. The additional cost with B L U P - G  relative 

to BLUP-A is due to a slower convergence and the addi- 

tional equations for genetic groups. 
The computat ional  costs of obtaining A can be a 

handicap for the application of BLUP-,~ with large pedi- 
grees. Often A -  ~ is approximated without computing A 
by disregarding inbreeding of the parents. Similarly, A - ~ 
can be approximated by disregarding covariances be- 

tween potential sires and between potential dams, in ad- 
dition to their inbreeding coefficients. Then ~i in (10) can 
be approximated by 

si di 

5 i -  1 -  0.25 ~2 P~ --0.25 Z q~k (11) 
j= l  k=l 

and A-1  can be calculated without needing A. Further- 

more, if the probabilities for each potential parent are the 
same 

5 i~  1 - 0.25/s i -  0.25/d i. 

Using (11) the statement by Henderson (1988) that "un- 
fortunately, in the multiple sire problem D must be com- 

puted (from A) even for non-inbred populations" can be 
relaxed. 

The rate of convergence to solve the M M E  using (10) 
or (11) was almost the same (Table 2). The results with 
(11) are shown in Table 3. In the case of genetic goups, A 
was computed neglecting inbreeding. The use of the ap- 

proximation for both A or A did not affect either re- 
sponse to selection or inbreeding attained. M S E G M  and 
MPEV were only slightly greater than with the exact 
formulas. Estimates of response were unbiased with 
BLUP-A 1 and BLUP-A 2. BEGM with BLUP-G,  how- 
ever, seemed to be greater. This may be of concern when 
the objective is to estimate genetic trends and not only to 
rank animals using BLUP-G. The effect of inbreeding in 
this case merits further research. 
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Table 3. Simulation results using A with three potential sires (BLUP-A1), A. with ten potential sires (BLUP-A2), and genetic groups 
(BLUP-G). The percentage of female offspring with unknown sire was 30%. The approximation in Eq. (11) was used to obtain the 
inverse of the additive relationship matrix. Five breeding seasons and 500 replicates per method were run 

Method % of males with Response _+ 0.08 F" x 100 BEGM b MSEGM r MPEV d 
unknown sire 

BLUP-A. 1 0.10 7.53 6.80 0.01 0.39 17.41 
BLUP-A 1 0.30 7.55 6.72 0.03 0.39 17.62 
BLUP-,~ z 0.10 7.48 6.63 0.04 0.40 17.62 
BLUP-Aa 0.30 7.20 6.49 0.05 0.44 17.74 
BLUP-G 0.10 7.17 6.14 0.57 0.53 24.16 
BLUP-G 0.30 6.94 5.68 0.36 0.63 23.98 

Mean inbreeding coefficient in the last breeding season computed using the real pedigree 
b Bias of the estimated genetic mean in the last breeding season 
~ Mean squared error of the genetic mean 
d Mean prediction error variance 

Conclusions 

We have shown that  N a 2, as defined by Henderson 
(1988), is the correct covariance matr ix  of additive effects 
with uncertain parentage. Thus, using A in the MME,  
genetic evaluat ion can be obtained by B L U P  without  
introducing genetic groups into the model, together with 
the associated assumption that  unknown parents  are un- 
related, as in BLUP-G.  However, it should be borne in 
mind that  with uncertain parentage,  BLUP is not  equal 
to the condi t ional  mean (Poivey and Elsen 1984). 
Nonetheless, Poivey and Elsen (1984) found that  re- 
sponse to selection was similar using the linear predictor  
and the condi t ional  mean. 

The simulation results showed that  greater response 
to selection can be obtained using B L U P - A  than using 
BLUP-G.  The advantage of B L U P - A  over B L U P - G  in- 
creased as the percentage of animals with unknown par-  
ents and the number  of potent ial  parents  were smaller. 
Estimates of response obtained by B L U P - G  were biased, 
while those obtained by B L U P - A  were not. 

To obta in  genetic evaluations by B L U P - * ,  potent ial  
parents must be identified for animals with unknown 
parents, and probabil i t ies  of parentage have to be as- 
signed. Thus, more information is taken into account 
with BLUP-~.  than with BLUP-G.  In some situations, 
however, identification of potent ial  parents  may be diffi- 
cult for some animals. In this situation, genetic evaluat ion 
can be obtained by using a combinat ion  of A and genetic 
groups in the MME.  

Another  potent ial  appl icat ion of B L U P - *  is for the 
mixed model  analysis of experiments with l abora tory  an- 
imals. In such experiments, mass selection (Falconer 
1989) is usually practiced and the complete pedigree is 
rarely available, but  identification of potent ial  parents  is 
generally possible. Thus, a mixed model  analysis using 
is appropriate .  
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Appendix 

Proof that D is diagonal 

For any two individuals, one will not be a direct descendent of 
the other. Thus, first it will be shown that Cov (u 1, el) = 0 for any 
1 that is not a direct descendent of i. Consider the model given 
in (9): 

si di 
Ui= 0"5 ~ '  Pij Umj+ 0"5 '~ qik Ufk-[-~i' 

j =1 k=l  

From (7) it can be seen that 

, ,  pi um + 04  q, uf.) 
Thus, Coy (u I, ~i) = 0. Consider the linear model for the breeding 
value of animal 1 

Sl dl 
uI=O, 5 '~  Plj UVj+0.5 ~, qlk U~k-}-,~l 

j = l  k=l  

where #j and ~b k are a potential sire and dam of 1, respectively. 
Coy (u m , ei) =Cov (u~, e~) = 0, for any j, k because #j and q~k are 
not direct descendents of i. Then, since Cov(u~,e~)=0, 
Cov(el, ei) is zero and D is diagonal. 
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